Integrability and Limit Cycles via First Integrals
نویسندگان
چکیده
In many problems appearing in applied mathematics the nonlinear ordinary differential systems, as physics, chemist, economics, etc., if we have a system on manifold of dimension, two them having first integral, then its phase portrait is completely determined. While existence integrals for systems manifolds dimension higher than allows to reduce space dimensions independent have. Hence, know important, but following question appears: Given system, how it has integral? The symmetries force integrals. This paper main objectives. First, study compute polynomial using so-called Darboux theory integrability. Furthermore, second, show use finding limit cycles piecewise systems.
منابع مشابه
Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملrelationships between darboux integrability and limit cycles for a class of able equations
we consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmpxypxypxy++++2(,)(,)(,)nnmnmyqxyqxyqxy++&=++. for where and are homogeneous polynomials of degree i. inside this class of polynomial differential equation we consider a subclass of darboux integrable systems. moreover, under additional conditions we proved such darboux integrable systems can have at most 1 limit cycle.
متن کاملLimit cycles of cubic polynomial differential systems with rational first integrals of degree 2
The main goal of this paper is to study the maximum number of limit cycles that bifurcate from the period annulus of the cubic centers that have a rational first integral of degree 2 when they are perturbed inside the class of all cubic polynomial differential systems using the averaging theory. The computations of this work have been made with Mathematica and Maple.
متن کاملBifurcation of Limit Cycles via Averaging Theory
We study the bifurcation of limit cycles from the periodic orbits of a four-dimensional center in a class of piecewise linear differential systems. Our main result shows that three is an upper bound for the number of limit cycles that bifurcate from a center, up to first order expansion of the displacement function. Moreover, this upper bound is reached. The main technique used is the Averaging...
متن کاملLocal bifurcation of limit cycles and integrability of a class of nilpotent systems of differential equations
* Correspondence: jinyinlai@lyu. edu.cn School of Science, Linyi University, Linyi 276005, Shandong, P.R. China Full list of author information is available at the end of the article Abstract In this article, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of seventh-degree systems are investigated. With the help of computer algebra system MATHEMATIC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2021
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym13091736